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Abstract

A method of computing the concentration ®eld of dissolved material inside an etch-hole is presented. With a
given velocity ®eld, approximate convection±di�usion equations are formulated using a number of assumptions, and

analytical descriptions for the concentration in di�erent parts of the domain are obtained. By coupling these
descriptions the concentration ®eld can be computed. The assumptions and the results are validated by comparison
with solutions based on a ®nite-volume method. Results of the boundary-layer method are given for two

characteristic etch-hole geometries. The described boundary-layer method is e�cient in terms of computational time
and memory, because it does not require the construction of a computational grid in the interior of the domain.
This advantage will be exploited in a future paper where the method will be used to simulate wet-chemical

etching. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The mathematical modelling of ¯uid ¯ow in combi-

nation with mass or heat transport in cavities has been

a topic of active research for the last three decades.
Several articles have been written for a wide range of

applications varying from the evolution of corrosion

pits, heat transfer along rough surfaces, crystal-growth

processes, electro-deposition, and mass transfer from
cavities in artery walls.

In this paper, a mathematical model and a numerical

method are developed for modeling mass transport in

a partially covered cavity as a part of a numerical
simulation method for wet-chemical etching. The ma-
terial and ¯uid-¯ow properties of this process are used

to simplify the convection±di�usion equation. In this
way a time- and memory-saving algorithm for the
computation of the concentration of dissolved material
in arbitrary etch-hole geometries can be obtained.

Although the description of the method is given in this
context, the mass-transfer results can be translated
directly into a heat-transfer analogue.

Wet-chemical etching is an important technique in
modern technology. Applications can be found in
the production of oil ®lters, shadow masks for

color TV sets, lasers, integrated circuits, etc. A typi-
cal etching process can be described in the following
way (see Fig. 1): A thin piece of metal is partly

covered with a mask. A chemical solution is
sprayed onto it, dissolving the exposed metal. Using
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this method, detailed small products can be pro-
duced routinely. Because dissolution will occur in
all directions, geometries such as that depicted in

Fig. 2(a) will arise. Sideways etching under the
masks results in the so-called `undercut' e�ect. The
result of this e�ect is that the etch hole is larger,

and the size of the etched product is smaller than
the original mask pattern. These di�erences between

products and masks can become large, especially for
products whose sizes are of the same order as the

thickness of the material. Therefore, research is
necessary to obtain information about this e�ect in
etching processes.

The modelling of heat or mass transport from cav-
ities and the related simulation of wet chemical etching
have been considered in a number of studies. In [17±

19,30] the etching process was modelled by a di�usion
equation. For such a process, in which the e�ect of

¯uid ¯ow is disregarded, some analytical solutions for
the propagating etch-hole boundary [17±19] were

Nomenclature

c concentration of dissolved material
c0 concentration of dissolved material in sur-

rounding ¯uid

ci concentration of dissolved material in
boundary layer i

cw concentration of dissolved material at etch-

hole boundary
C dimensionless concentration
Cl dimensionless concentration around center

of left eddy
Cc dimensionless concentration around center

of central eddy
Cr dimensionless concentration around center

of right eddy
D di�usion coe�cient
L characteristic lengthscale

n dimensional coordinate measuring distance
from mask

N dimensionless coordinate measuring dis-

tance from mask
Pe PeÂ clet number
q dimensional coordinate measuring distance

along mask
qi length of mask boundary layer number i
Q dimensionless coordinate measuring dis-

tance along mask

Qi parameter de®ned by Eq. (10)
S surface of control volume
u longitudinal velocity in free boundary layer

u velocity vector

U characteristic velocity
W distance between masks
x dimensional coordinate measuring distance

along free boundary layer
x i length of free boundary layer number i
X dimensionless coordinate measuring dis-

tance along free boundary layer
Xi parameter de®ned by Eq. (9)
y dimensional coordinate measuring distance

from dividing stream line
Y dimensionless coordinate measuring dis-

tance from dividing stream line

Greek symbols
ai shear stress in boundary layer i
di thickness of boundary layer i

f dimensional coordinate measuring distance
along etch-hole boundary

fi length of etch-hole boundary layer num-

ber i
F dimensionless coordinate measuring dis-

tance along etch-hole boundary

k dimensionless di�usion coe�cient
y dimensional coordinate measuring distance

from etch-hole boundary
Y dimensionless coordinate measuring dis-

tance from etch-hole boundary
C stream function
zi, j, oi, j parameters de®ned by Eq. (14)

Fig. 1. The wet-chemical etching process.
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found. In [18,30] numerical methods were introduced

to tackle this problem. However, in most of the indus-

trial wet-chemical etching applications, convection

plays an important role. One can think of a set-up in

which the etchant ¯ows along the mask surface, thus

creating a ¯ow pattern inside the etch hole. This ¯ow

pattern may have a large in¯uence on the time evol-

ution of the etch-hole boundary. Therefore, it is im-

portant to obtain accurate numerical simulations of

convection-driven etching processes.

An important quantity for the construction of an

etching simulation is the displacement velocity of the

etch-hole boundary. From experiments it is known

that it takes in the order of minutes to etch a sample.

Therefore the etching simulation can be performed in

a quasistationary manner. Since the boundary of the

etch hole moves slowly in comparison with the ¯uid,

the velocity and concentration ®elds at each time step

can be computed as if the boundary were stationary. If
the ¯uid has a uniform density in the etch-hole, the

¯ow problem can be solved independently of the con-

centration problem. Several papers were written based

on ®nite-element or ®nite-volume approaches [3,11,13±

15,21,26±28] for the computation of the ¯uid ¯ow in

an etched cavity. In Ref. [25] a boundary-element

method is used. Afterwards the concentration ®eld is

computed with a ®nite-volume, ®nite-element or spec-

tral method. If the concentration gradient normal to

the wall is known, the displacement of the etch-hole

boundary can be computed.

In the cited numerical simulations, as well as in ex-

periments [3,9,10,13,15], it is noticed that the etch

speed decreases when the depth±width ratio of the cav-

ity increases. When the etching has gone down to a

depth that is comparable to the width of the ori®ce of

the cavity, an eddy will emerge inside the etch hole [6].

The PeÂ clet number, which is the ratio of the character-

istic length scale multiplied by the velocity and divided
by the di�usion coe�cient Pe � UL=D, is an import-

ant parameter for the qualitative description of mass

transport. The characteristic velocity U is related to

the velocity at a small distance above the etch-hole

and L is the distance between the mask edges. For

large values of the PeÂ clet number transport of the `pol-

luted' ¯uid takes place in a thin boundary layer along

the rim of this eddy [11,13,16,25,28]. The exchange of

etching products occurs by means of di�usion across

the streamline that separates the eddy from the outer

¯ow. Around the center of the eddy the concentration

of the dissolved material is uniform. Therefore, only

the concentration in the rims of the eddies needs to be
computed.

In this paper, we describe a time- and memory-sav-

ing method by which the concentration ®eld can be

computed around these rims. We extend the analytical

descriptions of the concentration around eddy rims as
introduced by Kuiken [16]. In the geometry of [16]

only one eddy was present. Kuiken derived equations

in which the in¯uence of the ¯uid ¯ow was reduced to

one unknown parameter. In the present paper, the the-

ory as described in [16] is validated, an extension to

the theory is made, and the method is applied to realis-

tic etch-hole geometries.

Although the method as described in [16] is appli-

cable to a wide range of problems, ®nite-volume or

®nite-element approaches were preferred later in papers

on the modelling of heat or mass-transfer problems in

cavities. Rare counter-examples are [2,5].

When a numerical simulation of wet-chemical etch-

ing is constructed in a quasi-stationary way by means

of a ®nite-volume or ®nite-element method, a large

number of equations must be solved at each time step.

In this way, a time-consuming etch simulation is

obtained. Especially, when the PeÂ clet number increases,

the convergence of such methods decreases, and this
makes it even more di�cult to compute a solution to

the concentration problem.

The method presented here has the advantage that it

does not need much computational time or memory.

The only information needed is the normal stress at
the etch-hole boundary and the location of, and the

velocity components at, the dividing streamlines. A

computational grid in the etch-hole geometry is not

necessary. Another advantage of this method is that

Fig. 2. De®nition of boundary layers (a), and de®nition of local coordinates in boundary layers (b).

C.H. Driesen et al. / Int. J. Heat Mass Transfer 43 (2000) 1823±1835 1825



we can use a boundary-element method to obtain all
information needed for the computation of the concen-

tration. Normally a boundary-element method is ex-
pensive for such a problem, because the velocity
components have to be computed in many interior

points in order to solve the convection±di�usion
equation with a ®nite-volume method. In the method
described here, the velocity components are only

needed at a few interior points. In this way, a numeri-
cal simulation of etching can be constructed which
needs little computational time and memory in com-

parison with earlier numerical schemes.

2. Mathematical formulation

In this section, we formulate the mathematical
method used in this paper. In Section 2.1 we give the
de®nition of the problem. In the Section 2.2, a bound-

ary-layer analysis of the concentration of the dissolved
material is used to simplify the convection±di�usion
equation.

2.1. Problem de®nition

In this paper we consider the equations describing

the concentration ®eld of a dissolved material in a
given velocity ®eld. We assume that the di�usion coef-
®cient D is constant. With this assumption, the concen-

tration ®eld c is described by the stationary
convection±di�usion equation:

u � rcÿDDc � 0 �1�
where u is the velocity vector. In this paper we describe
a method by which the concentration of dissolved ma-
terial can be computed for an arbitrary etch-hole ge-

ometry. An example of such an etch-hole geometry is
given in Fig. 2(a). The concentration has a constant
value cw at the etch-hole boundary. The dissolved ma-
terial cannot penetrate the mask, and the normal

gradient is taken equal to zero, i.e. @c=@n � 0: Above
the etch-hole, the boundary conditions depend on the
direction of the ¯uid ¯ow. In the oncoming ¯uid, the

concentration of the dissolved material is equal to c0:
In the ¯uid ¯owing out of the cavity, convection is
dominant. Therefore, boundary conditions are not

necessary in the out¯ow region.

2.2. Assumptions and simpli®cations

In this subsection we describe the assumptions
that may be used to simplify the convection±di�u-
sion equation for di�erent sub-domains. The simpli-

®ed equations can be solved in a semianalytical
way.

In the case of a uniform shear ¯ow along an etch
hole, eddies will arise in the interior. The method we
use is applicable for an arbitrary number of eddies. In

fact, it is known [23] that there exists an in®nite
sequence of eddies of diminishing strength near sharp
corners. It was concluded in Ref. [16] that the in¯uence

of these very small eddies would but slightly improve
the results. As an example, in Fig. 2(a) only three
eddies are shown, the smaller vortices in the sharp cor-

ners are disregarded.
Due to the convection-dominated character of the

process, the concentration will only vary in thin
boundary layers along the rims of the eddies, which

are drawn with the dashed lines in Fig. 2(a). The
method starts with the splitting of these eddy rims into
di�erent sub-domains. When we consider, for example,

the central eddy in Fig. 2(a), the ¯uid near the outside
of this eddy ¯ows ®rst along the etch-hole boundary
(boundary layer 2) and then along the free stream line

(number 7 in Fig. 2(a)). The eddy boundary layer is
split at such a change in boundary condition. In this
way, three di�erent kinds of boundary layers are

obtained: There are free boundary layers, boundary
layers along the masks, and boundary layers along the
etch-hole boundary. We will illustrate the simpli®ca-
tion of the convection±di�usion equation for these

three di�erent kinds.
For all boundary layers, we assume that the di�u-

sion in streamwise direction is negligible when com-

pared to the di�usion in normal direction. We neglect
the curvature for the local coordinate systems, since
the radius of curvature is asymptotically large in com-

parison with the thickness of the boundary layers.
As a ®rst example, we consider a free boundary

layer, numbered 7 in Fig. 2(a). The local system (x, y )
is introduced as shown in Fig. 2(b). Here y is the dis-

tance normal to the dividing streamline and x measures
distance along the streamline. Variations of the vel-
ocity component tangential to the separating stream-

line in the direction normal to this streamline are
ignored. Using the continuity equation, we may derive
an expression for the normal velocity component. Here

we should remark that the thickness of a boundary
layer depends on the PeÂ clet number. A high PeÂ clet
number will result in a thin boundary layer. The

assumptions regarding the velocity pro®les are realistic
for large PeÂ clet numbers. When all assumptions are
used to simplify Eq. (1), we obtain [16]

u7�x�@c7
@x
ÿ yu 07�x�

@c7
@y
� k

@ 2c7
@y2

, �2�

where u7�x� is the tangential velocity component along
y � 0, k is equal to 1/Pe, and 7 is the index of the
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boundary layer. The region where this equation holds
is formally de®ned by 0RxRx 7 and ÿ 1

2dyRyR 1
2dy,

where x 7 is the length and dy is the thickness of the
boundary layer. The boundary conditions for the con-
centration in this free boundary layer are

@c7
@y
� 0 at y � ÿ1

2
dy and y � 1

2
dy, 0RxRx 7 �3�

The free-surface conditions at x = 0 are derived from
the boundary-layer joints, and will be given later.

As a second example we consider a boundary layer
along the mask, numbered 9 in Fig. 2(a). In Fig. 2(b),
the local coordinates (q, n ) are shown. Here n is the

distance normal to the mask and q measures distance
along the mask. For these boundary layers, we assume
that the tangential velocity component has a linear

pro®le near the boundaries. Substitution of the
assumptions in Eq. (1) results in [16]

a9�q�n@c9
@q
ÿ 1

2
a 09�q�n2

@c9
@n
� k

@ 2c9
@n2

, �4�

where a9�q� is the shear stress at the mask. The region

where this description holds is 0R1Rq9 and 0RnRdn,
where q9 and dn have the same meaning as x 1 and dy
for the free boundary layers. The boundary conditions

for c9 are

@c9
@n
� 0 at n � 0 and n � dn, 0RqRq9: �5�

The free-surface conditions at q = 0 will be given at
the end of this section.

As a third example we consider a boundary layer
along the wall, numbered 2 in Fig. 2(a). The assump-
tions and simpli®cations are similar to those used for
the mask boundary layers. The simpli®ed convection±

di�usion equation with boundary conditions can be
written as Eq. (4) in combination with Eq. (5) after
substitution of the local coordinates �f, y). The bound-

ary condition at y � 0 changes into c2 � cw at y �
0, 0RfRf2 with f2 the length of the boundary layer.
The only remaining boundary conditions are the joints

between the di�erent boundary layers.
For each boundary layer, free-surface conditions are

necessary for the concentration pro®le at the beginning
of the boundary layer. From Fig. 2(a) we see that the

concentration at the end of a boundary layer can be
related to the concentration at the beginning of the
next boundary layer. We assume that the ¯uid ¯ow is

smooth at each layer interface, and the concentration
remains the same along the streamlines in those
regions. Therefore, a reasonable matching procedure is

to relate the concentration pro®le at the end of one
boundary layer to the pro®le at the beginning of the
next boundary layer by means of the stream function

C, de®ned as u � @C=@y, v � ÿ@c=@x, where u and v
are the velocities in streamwise and transverse direction
respectively and x and y are the local coordinates. To

show an example, for the region where boundary layer
7 joins boundary layer 2, we ®nd

c7�x, C�0c2�f, C� if
x

x 7
� 1 and

f2 ÿ f
f2

� 1, �6�

from which the relation

u7�x�y � 1

2
a2�f�y2 �7�

can be derived. The coupling of the stream-function
values is shown in Fig. 3. This way of coupling the

pro®les will result in an error because the expressions
for the stream functions do not hold for x = 0 and
f � f2, respectively. At the region where boundary

layer 6 is coupled to boundary layer 5, we ®nd

1

2
a6�f�y2 � 1

2
a5�q�n2 if

f1 ÿ f
f1

� 1 and
q

q5
� 1: �8�

For the other boundary-layer connections, similar re-
lations can be derived except for the concentration
pro®le at the beginning of boundary layer number 1.
For this concentration pro®le, the value of the concen-

tration at x = 0 and yR0 is taken equal to c0: Note
that boundary layer 3 as well as boundary layer 7 are
coupled to four other boundary layers. In total, 12 re-

lations can be derived such as given in Eqs. (7) and
(8).

3. Integral representations

In this section, we will derive integral representations

Fig. 3. Coupling of stream-function values.
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for the solutions of Eqs. (2) and (4) in combination
with the boundary conditions. This derivation is done

for the examples given in the previous section. To
obtain integral representations, we introduce the fol-
lowing transformations. For the concentration pro®les

along free streamline 7, we introduce [16]

c7 � c0 � �cw ÿ c0 �C7�X, Y�, X �
� �x

0

u7�p� dp
�
X ÿ17 ,

Y � yu7�x��kX7 �ÿ1=2, X7 �
�x 7

0

u7�p�dp: �9�

These transformations hold for 0RxRx 7: For concen-
tration pro®le number 9, we introduce [22]:

c9 � c0 � �cw ÿ c0 �C9�Q, N�, Q �
� �q

0

a1=29 �p� dp
�
Qÿ19 ,

N � na1=29 �q��kQ9 �ÿ1=3, Q9 �
�q9
0

a1=29 �p�� dp�: �10�

These transformations hold for 0RqRq9: For the con-
centration layers along the edge±hole boundary, simi-

lar transformations are used. These transformations
can be derived from Eq. (10) by replacing of the par-
ameters q, n, Q and N by f, y, F and Y:
With the transformations (9), Eq. (2) with boundary

conditions (3) reduces to

@C7

@X
� @ 2C7

@Y 2
, 0RXR1, ÿ1RYR1, �11�

with boundary conditions @C7=@Y40 if Y4 ÿ1 and

Y41: Since the value of the di�usion coe�cient k in
Eq. (9) is very small, the range of Y is large and Y �
21 is a good approximation for the edge of the
boundary layer.

With transformations (10), Eq. (4) with boundary
conditions (5) reduces to

N
@C9

@Q
� @ 2C9

@N 2
, 0RQR1, 0RNR1, �12�

with boundary conditions @C9=@N � 0 if N = 0 and
N41: For boundary layer 2 an equation similar to
Eq. (12) can be obtained, but the boundary condition

is C2 � 1 if Y � 0: Similar equations can be derived
for the other boundary layers.
We can use the scaled quantities to derive matching

conditions for the concentration pro®les at the bound-
ary interfaces. With Eqs. (9) and (10), the relations at
the boundary interfaces (6) and (8) can be rewritten as

C2

ÿ
1, o7,2N

2
�
� C7�0, N� and

C6

ÿ
1, z6,5N

� � C5�0, N�
�13�

where

o7,2 � 1=2
�kQ2 �2=3
�kX7 �1=2

and z6,5 � �
Q5 �2=3
�F6 �2=3

�14�

For all other boundary interfaces di�erent oi,j or zi,j
can be de®ned. The boundary condition for the con-
centration pro®le at the beginning of the ®rst bound-
ary layer is C1�0, Y � � 0 if ÿ1RyR0: The only

parameters in the systems of di�erential equations are
o and z: These parameters take the in¯uence of the
geometry and velocity ®eld into account.

For all boundary layers, an integral description of
the solution can be constructed. For the boundary
layers along free streamlines, the representation of the
concentration is given by [1,12,24,29]

Ci�X, Y� � 1

2p1=2X 1=2

�1
ÿ1

Ci�0, P�eÿ�PÿY�2=4X dP: �15�

For i = 1, corresponding to the upper free boundary

layer, the initial pro®le for ÿ1RYR0 is equal to
zero. For this concentration pro®le, the interval for in-
tegration can be reduced to �0,1i: For the boundary

layers 4, 5, 9 and 10 along the masks, the concen-
tration pro®le is given by

Ci�Q, N� � 1

3Q

�1
0

N 1=2P 3=2eÿ�N
3�P 3�=9Q

Iÿ1=3

 
2

9

N 3=2P 3=2

Q

!
Ci�0, P�dP,

�16�

where Iÿ1=3�P � is a modi®ed Bessel function. For a
description of the derivation of the solution we refer to

Ref. [8]. For the boundary layers 2, 6 and 8 along the
edge-hole boundary, the integral solution is

Ci�F, Y� �
G

�
1=3,

Y3

9F

�
G�1=3�

� 1

3F

�1
0

Y1=2P 3=2eÿ�Y
3�P 3�=9F

� I1=3

�
2

9

Y3=2P 3=2

F

�
Ci�0, P�dP,

�17�

where G�a, b� � �1b taÿ1eÿt dt is the incomplete Gamma
function. By using the matching conditions at the
interfaces of the boundary layers like (13), all integral

representations are coupled to form a system of
equations for the unknown pro®les Ci�O, P �:
It is not possible to ®nd analytical solutions to
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these equations. Therefore, we will compute the sol-

utions numerically. To this end the region of inte-

gration is separated in two parts: a ®nite interval,

�ÿPm, Pm� for the free concentration layers and

�0, Pm� for the other boundary layers, and in®nite

intervals, hÿ1, ÿ Pm� and �Pm,1i for the free con-

centration layers and one interval �Pm,1i for the

other boundary layers. The assumption in the pre-

vious subsection was that the concentration only

varies in a small region of the boundary layers. We

choose the value of Pm in such a way that outside

of the interval �ÿPm, Pm� for free boundary layers

and [0, Pm� for the other boundary layers the con-

centration is approximately constant. Only one value

of Pm has to be chosen. From the relations between

the pro®les at the beginning and at the end of the

boundary layers such as Eq. (13), the values of Pm

can be calculated for all boundary layers.

For a given value of Pm, the interval [0, Pm� is dis-

cretized into a uniform grid. The kernels of the inte-

grals are represented point-wise in the center of the

intervals. Grid re®nement showed that such an ap-

proximation is su�ciently accurate. The coupling of

the integral relations is done in a special way. When

we consider the stream function values in the di�erent

boundary layers (Eq. (7)), it can be seen that the

stream function pro®le is quadratic in the free bound-

ary layers, and linear in the boundary layers along the

mask and along the wall. Therefore, the pro®les at the

beginning and at the end of the free boundary layers

are replaced by the corresponding pro®les at the end

or, respectively, at the beginning of the pro®les along

the mask or the wall. In this way, a linear system can

be obtained for 12 unknown pro®les from the 12 inte-

gral equations.

4. Finite-volume method

A ®nite-volume method was implemented for vali-

dation of the assumptions mentioned in Section 2.2 for
an etch-hole geometry without undercut e�ect. In this
section, we brie¯y describe this numerical method. It is
not necessary to discretize the complete geometry,

since a large eddy will arise in the interior of the cavity
in which the concentration is approximately constant.
The surrounding part of the domain is discretized with

a structured grid which is shown in Fig. 4(a). The con-
vection±di�usion equation div�u � cÿD grad c� � 0 is
integrated over each control volume de®ned by the

four centers of the grid cells neighbouring coach grid
point. The convective terms are discretized by a second
order upwind method, whereas a second order [4] cen-

tral discretization is used for the di�usion terms. At
the mask a Neumann boundary condition is adopted,
while at the etch-hole boundary the Dirichlet condition
is implemented through a virtual grid point. Above the

etch-hole the concentration equals c0 at the in¯ow
boundary and a boundary condition is not needed at
the out¯ow boundary. The linear system of equations

resulting from the discretization is solved with a sym-
metric Gauss±Seidel method.

5. Validation

The convection±di�usion equation is solved by
means of the ®nite-volume method. The only assump-
tion made is that the concentration near the center of

the eddy is constant. Therefore, a grid is not necessary
there (see Fig. 4(a)). We have implemented this
assumption by setting the normal concentration deriva-

Fig. 4. Computational grid (a) and iso lines of the scaled concentration computed with the ®nite-volume method (b).
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tive at the inner boundary of the grid equal to zero.

As mentioned in the introduction, the method is es-
pecially applicable for situations with high PeÂ clet num-
bers. The characteristic velocity is evaluated at the

centerline near the mouth of the cavity and the dis-
tance between the masks is taken as the characteristic

lengthscale. The scaled di�usion coe�cient in Eq. (1) is
taken equal to 3.1� 10ÿ6, which corresponds to a PeÂ c-
let number of about Pe190,000: The scaled concen-

tration at the etch-hole boundary Cw is taken equal to
unity. In Fig. 4(b), the ®nite-volume solution of the

convection±di�usion equation is shown. In this section
we will check the assumptions made in Section 2.2 by

comparison with the ®nite-volume results.
To give an indication of the time needed for the

boundary-layer method the unknown pro®les were

computed in less than one second on a single R10000
processor, while it took on the order of minutes to

compute a ®nite-volume solution of the same accuracy.
To con®rm that the concentration near the center of

the eddy is constant, we inspect the concentration as
computed with the ®nite-volume method at the grid
points near the center. The scaled concentration values

at these points vary between 0.33 and 0.3314 which is
a maximum di�erence of less than 0.5%.

To con®rm that the di�usion in the stream-wise
direction is negligible in comparison with the di�usion

in the normal direction, we computed the second de-
rivatives from the solution of the ®nite-volume
method. The second derivative in the normal direction

is of O(102) along the etch-hole boundary, while the
second derivative in tangential direction is of O(1).

However, near the beginning and the end of the free

streamline, where the ¯ow makes a sharp bend, these

quantities are of the same order of magnitude.
To validate the assumptions about the linearity of

the velocity pro®les near the etch-hole boundary, we
plotted these pro®les at three places. In Fig. 5(a), pro-
®les of the streamwise velocity (solid lines) as well as

the scaled concentration (dashed lines) are given as
functions of the distance to the etch-hole boundary.

Line (a) is near the bottom of the etch-hole, line (c) is
near the region where in the boundary-layer method
the boundary layers are matched and (b) lies in

between. We can conclude that the linearity assump-
tion holds in the region where the concentration var-

ies.
In Fig. 5(b) the velocity pro®le at the midpoint of

the free streamline is plotted. The dashed line shows
the scaled concentration pro®le at this location. In this
®gure, it can be seen that the velocity is fairly constant

in the region where the concentration varies.
The concentration is computed in order to construct

a numerical simulation of wet-chemical etching. The
dissolution of material into the ¯uid depends only on

the concentration derivative normal to the etch-hole
boundary. Therefore, the most important validation
arises from the comparison of this derivative. In Fig.

6, the concentration derivative normal to the etch-hole
boundary is shown for both methods. Near the bottom

of the etch-hole the di�erence is less than 1%, near the
beginning and the end of the free stream-line the di�er-
ence is 1±3%. These small di�erences justify the exten-

sion of the boundary-layer method to a system with
overhanging mask edges. In a separate paper, the

extended system will be included in a numerical simu-

Fig. 5. Comparison between variations in ¯uid ¯ow and concentration: (a) stream-wise velocity as a function of the normal distance

to the etch-hole boundary (solid lines) in comparison with the variation of the scaled concentration (dashed lines) and (b) stream-

wise velocity (solid line) as a function of y in the region where the scaled concentration (dashed line) varies.
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lation. In such a simulation, the numerical errors can
cause an over- or underestimation of the displacement
of the etch-hole boundary. In the next section we show

that the algorithm described in this paper will smooth
out this error in the subsequent time steps.

6. Results

In this section, we present some results of compu-
tations in etch-hole geometrics. We ®rst use the geome-

try as shown in Fig. 2(a), with 10 boundary layers.

The ¯uid-¯ow and shear-stress are computed with the

boundary-element method as described in [7]. In Fig. 7

concentration pro®les are given as functions of a scaled

normal distance. Pro®les 2, 4, 5, 6, 8, 9, and 10 are at

the beginning of the corresponding boundary layers.

Pro®les 2�, 4�, 5�, 8� and 10� are at the end of the cor-

responding boundary layers. These pro®les are equal

to the pro®les at the beginning of boundary layers 1, 3

and 7.

From Fig. 7 it can be concluded that the concen-

Fig. 6. Normal derivatives of the concentration at the etch-hole boundary computed with the ®nite-volume and the boundary-layer

method.

Fig. 7. Scaled concentration pro®les for di�erent boundary layers.
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tration reaches di�erent asymptotic levels in the di�er-

ent eddies. In the central eddy this concentration level

is low because this eddy is attached to the ¯uid outside

by the dividing stream-line. The asymptotic concen-

tration level in the center of the right eddy is lower

than the asymptotic concentration level in the center

of the left eddy. To explain this, we recall that the

¯uid ¯ows in a clockwise direction in the central eddy.

The ¯uid becomes more and more `polluted' with dis-

solved material. Therefore, the concentration of the

¯uid will be higher at the left side of the etch-hole,

which results in a higher asymptotic concentration

level in the left eddy. A concentration pro®le with a

scaled asymptotic concentration equal to zero is not

plotted in this ®gure. Such pro®les are present at the

beginning and at the end of boundary layer 1, but are

not included in the matching procedures. The pro®le

at the beginning of this boundary layer for yR0 is

equal to zero, the pro®le at the end can be computed

by Eq. (15).

Another result of the computation is the distribution

of the normal derivative of the concentration at the

etch-hole boundary. With this normal derivative, the

movement of the etch-hole boundary can be computed.

In Fig. 8 the derivative is plotted at the boundary. A

large derivative will result in a high etch speed. From

this picture, it can be seen that the etch-hole boundary

will become asymmetric as a result of the ¯uid ¯ow.

The second line plotted in Fig. 8 is the normal concen-

tration derivative when locally a small hole is included

in the geometry. The geometry and the modi®ed geo-

metry are also shown in the ®gure. As a result of such

a hole, the etch rate at the bottom of the hole

decreases and the etch rate increases at both sides. It

can be concluded that such holes are smoothed out by

the etching process.

As a second example of a concentration compu-

tation in an etch-hole geometry, we consider the con-

centration for the initial geometry of the etching

process, shown in Fig. 9. At the beginning of the etch-

ing process only small vortices are present at both

sides near the masks and the central eddy present in

Fig. 2(a) has not been formed yet. We apply the

boundary-layer method to this geometry. Fig. 9 shows

the numbering of the boundary layers. We take the

ratio of depth and width of the cavity equal to 1:4. In

Fig. 10, the concentration pro®les at the beginning or

at the end (with an asterix) of the boundary layers are

given as a function of a scaled normal distance com-

puted for Pe � 90,000: Here, a theory similar to that

stated above about the asymptotic concentration levels

holds.

In Fig. 11 the normal derivate of the concentration

is plotted along the bottom of the etch hole for di�er-

ent values of the PeÂ clet number. These PeÂ clet number

values are chosen to make the results comparable to

those plotted in [25]. Occhialini et al. used a boundary-

clement method for the ¯ow computation, and an or-

thogonal-collocation method to solve the convection±

di�usion equation. The results are very much alike.

Because the boundary-layer method is only applicable

at large PeÂ clet numbers we computed the derivatives

only for Pe = 3000, 5000, 10,000 and 15,000, respect-

Fig. 8. Normal derivatives of the concentration at the etch-hole boundary for a smooth geometry and a geometry with a small

local hole.

Fig. 9. De®nition of boundary layers.
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ively. As mentioned in [25] the concentration derivative
is low near the corners as a result of the secondary

corner eddies predicted by Mo�att [23]. However, the
boundary-layer method shows mild ¯uctuations near
these corners. The ¯uctuations appear as a result of

the secondary eddies, which are not accounted for in
the boundary-layer model. This sensitivity problem will
be tackled in a future paper.

For both etch-hole geometries, one can notice the

di�erence in normal concentration derivative at the
stagnation and separation point. At the stagnation

point the ¯uid ¯ows toward the boundary and the con-
centration gradient is smooth. Near the end of the
boundary layers, the ¯uid ¯ows away from the separ-

ation point. Here, the normal concentration derivative
has a local minimum. As a result of this local mini-

mum, etching will proceed slowly at the separation
point, and this will result in an non-smooth etch-hole

Fig. 10. Scaled concentration pro®les for di�erent boundary layers.

Fig. 11. Normal derivatives of the concentration at the etch-hole boundary for Pe = 3000 (a), 5000 (b), 10,000 (c) and 15,000 (d).
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boundary. However, as the depth of the etch-hole
increases, the stagnation and separation points will

move towards each other, and this ®nally results in a
central eddy.

7. Concluding remarks

In this paper we have de®ned a semi-analytical way
for the computation of the concentration in an etch-

hole con®guration. Using a number of assumptions,
we have constructed analytical descriptions in di�erent
sub-domains. By coupling these sub-domains, the con-

centration and its normal derivative at the etch-hole
boundary can be computed. The advantage of the
boundary-layer method compared to spectral-element

or ®nite-element methods is that a computational grid
for the interior is not required, and only the boundary
and the dividing streamlines inside the domain need to
be described. In this way, the etching process can be

simulated with little computational power and mem-
ory.
Although the validation showed that not all assump-

tions are valid throughout the entire domain, the con-
centration gradient can be computed with an accuracy
that is su�ciently good to justify the use of this

method in a numerical etch simulation. The initial
etch-hole geometry showed good qualitative agreement
with earlier fully numerical results reported in [25].
Only near the corners the boundary-layer method

shows sensitivity to the smaller corner eddies. This will
be considered in a future paper. A modi®ed version of
the method presented can be applied to axisymmetric

three-dimensional cases too, such as described in Ref.
[20].
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